所务公开
信息公开
组织机构
联系我们
主要机构
科研部门
沈阳材料科学国家研究中心
·材料动力学研究部
·材料结构与缺陷研究部
·纳米金属材料研究部
·陶瓷及复合材料研究部
·先进炭材料研究部
·生物基材料与仿生构筑研究部
·功能材料与器件研究部
·先进钢铁材料研究部
·联合研究部
·技术支撑部
金属腐蚀与防护实验室
材料疲劳与断裂实验室
中国科学院核用材料与安全评价重点实验室
沈阳先进材料研究发展中心
材料环境腐蚀研究中心
材料失效分析中心
中国科学院高温结构材料重点实验室
高性能均质合金国家工程研究中心
国家金属腐蚀控制工程技术研究中心
管理部门
综合办公室    科技处
专项任务处    人事处
研究生教育处   财务处
资产处      后勤与基建处
管理部门独立机构
监察审计办公室  保密办公室
质量办公室
支撑部门
分析测试中心   学报文献中心
您现在的位置:首页 > 文化 > 所务公开 > 信息公开
锰氧化物纳米复合薄膜及其低场磁电阻效应的研究取得新进展
 
2014-10-16 | 文章来源:磁性材料与磁学研究部        【 】【打印】【关闭

  最近,沈阳材料科学国家(联合)实验室磁性材料与磁学研究部王占杰课题组,采用脉冲激光沉积方法,通过自组装生长模式,制备了多种复合结构的锰氧化物纳米复合薄膜;通过控制锰氧化物纳米复合薄膜的微结构,实现了温度区域可调的巨大的低场磁电阻效应。其中,具有棋盘状纳米结构的复合薄膜在室温附近显示出较大的低场磁电阻效应,因而在室温磁电阻微电子元器件上有广泛的应用前景。这一研究成果对巨磁电阻锰氧化物材料的研究和应用将起到重要的推动作用。

  磁电阻效应 (Magnetoresistance: MR) 是指材料的电阻随磁场而变化的现象。近年来, 巨磁电阻效应已经广泛地应用于数据读取磁头、磁随机存储器、磁传感器等微电子元器件上。上世纪90年代初,人们在掺杂锰氧化物薄膜中发现了比巨磁电阻效应更大的MR值,故称为庞磁电阻效应 (Colossal magnetoresistance, CMR)。因此,锰氧化物材料受到了研究者的广泛关注。大量的研究结果表明,虽然锰氧化物的本征磁电阻值很大,但是存在着适用温度区间窄,要求外加磁场高(~3 特斯拉)等问题,至今尚未得到实际应用。1996Hwang等人发现,多晶钙钛矿锰氧化物薄膜在远低于居里温度的低温,在很小的外加磁场下具有显著的磁电阻效应,称其为低场磁电阻效应 (Low-field magnetoresistance, LFMR)。人们已经尝试了多种方法用于提高锰氧化物的低场磁电阻,包括人工形成晶界、引入缺陷以及高阻态的第二相等。但是其低场磁电阻效应的温度区间多位于10-150 K的低温,而无法在室温附近应用。因此,在增加锰氧化物薄膜的低场磁电阻的同时,如何提高其发生温度是需要解决的一个关键问题。

  针对这一问题,该课题组研究人员在La0.7Sr0.3MnO3 (LSMO)中引入NiO第二相,采用脉冲激光沉积方法 (Pulsed Laser Deposition: PLD),通过自组装生长模式制备出了纳米棋盘结构纳米柱状结构的复合薄膜(1和图2)

1 纳米棋盘状结构和纳米柱状结构的示意图

2 具有不同微观组织结构的LSMO-NiO纳米复合薄膜的TEMHRTEM断面照片以及FFT斑点:(a) 纳米棋盘结构, (b) 纳米柱状结构

  1是两种理想的微观组织结构的示意图,其中,L代表LSMON代表NiOLSMONiO两相相间,构成纳米棋盘状结构和纳米柱状结构。其中,NiO相的尺寸应控制在1~2 nm,以形成纳米尺度的LSMO/NiO/LSMO隧道结。利用LSMO/NiO/LSMO的隧穿电阻以及LSMO/NiO界面的散射作用提高复合薄膜的磁电阻;通过控制LSMO母相的应变以及由其引起的居里温度和金属-绝缘转变温度的变化,在增大低场磁电阻的同时提高低场磁电阻效应的发生温度。之所以选用反铁磁、半导体的NiO作为第二相,主要考虑以下几方面的因素:1) NiOLSMO具有良好的晶格匹配度。该课题组研究人员在研究LSMO:NiO颗粒复合薄膜、层状复合薄膜的交换偏置现象时发现,在NiO/LSMO界面,NiOLSMO具有良好的晶体学外延关系(Journal of Applied Physics, 113 (2013), 223903., IEEE Transactions on Magnetics, 50 (2014), 1000304)2) 由于Ni2+ (0.69Å) 离子半径远大于Mn3+Mn4+离子半径(分别为:0.58 Å 0.53 Å),所以Ni2+不会替代Mn3+Mn4+离子而进入LSMO晶格。这样,就避免了由于成分变化而引起的LSMO磁性、居里温度和金属-绝缘转变温度等的变化。3) 由于NiO的半导体特性,可以在LSMO/NiO界面形成比较高的势垒差以满足磁隧道结中高阻态第二相的要求。4) 如果能控制NiO尺寸和分布,就有可能形成由NiOLSMO构成的LSMO/NiO/LSMO隧道结。图2 是所制备的具有纳米棋盘结构纳米柱状结构的LSMO-NiO复合薄膜的TEMHRTEM断面照片。

  磁电阻测试结果表明:棋盘状结构的50% NiO体积比的 LSMO-NiO复合薄膜在200~300 K温度范围显示出较大的低场磁电阻效应 (250 K1 T下,LFMR = ~17);纳米柱状结构的70NiO LSMO-NiO复合薄膜在10~210 K温度范围显示出巨大的低场磁电阻效应 (10 K1 T下,LFMR = ~41%) (3)。通过控制LSMO:NiO纳米复合薄膜的微结构,实现了温度区域可调的巨大的LFMR微观组织结构对复合薄膜磁电阻性能的影响可以用有效电路模型解释。其作用机制是由于复合薄膜中存在LSMO/NiO界面的电子自旋散射和纳米尺度的LSMO/NiO/LSMO磁隧道结。相关研究结果已经发表在Advanced Functional Materials, 24(2014) 5393–5401

  这项研究工作得到了中科院百人计划,科技部973,国家自然科学基金,沈阳材料科学国家(联合)实验室基础前沿创新等项目的支持。

3 (a)不同成分LSMO-NiO纳米复合薄膜的磁电阻随磁场变化曲线,(b)具有纳米柱状结构的70NiOLSMO:NiO薄膜的磁电阻随磁场变化曲线。

 

文档附件

相关信息
联系我们 | 友情链接
地址: 沈阳市沈河区文化路72号 邮编: 110016
运维邮箱: office@imr.ac.cn
中国科学院金属研究所 版权所有 辽ICP备05005387号-1

官方微博

官方微信